6.3 Vectors in the Plane

Many quantities in geometry and physics, such as area, time, and temperature, can be represented by a single real number.

Other quantities, such as force and velocity, involve both magnitude and direction and cannot be completely characterized by a single real number.

To represent such a quantity, we use a directed line segment. The directed line segment \overrightarrow{PQ} has initial point P and terminal point Q and we denote its magnitude (length) by $\|PQ\|$.

![Diagram: Directed line segment with initial point P and terminal point Q]
Vector Representation by Directed Line Segments

Let \(\mathbf{u} \) be represented by the directed line segment from \(P = (0,0) \) to \(Q = (3,2) \), and let \(\mathbf{v} \) be represented by the directed line segment from \(R = (1,2) \) to \(S = (4,4) \). Show that \(\mathbf{u} = \mathbf{v} \).

Using the distance formula, show that \(\mathbf{u} \) and \(\mathbf{v} \) have the same length. Show that their slopes are equal.

\[
\|\mathbf{u}\| = \sqrt{(3-0)^2 + (2-0)^2} = \sqrt{13}
\]

\[
\|\mathbf{v}\| = \sqrt{(4-1)^2 + (4-2)^2} = \sqrt{13}
\]

Slopes of \(\mathbf{u} \) and \(\mathbf{v} \) are both \(\frac{2}{3} \).
Component Form of a Vector

The component form of the vector with initial point \(P = (p_1, p_2) \) and terminal point \(Q = (q_1, q_2) \) is

\[
\overrightarrow{PQ} = \langle q_1 - p_1, q_2 - p_2 \rangle = \langle v_1, v_2 \rangle = v
\]

The magnitude (or length) of \(v \) is given by

\[
\|v\| = \sqrt{(q_1 - p_1)^2 + (q_2 - p_2)^2} = \sqrt{v_1^2 + v_2^2}
\]
Find the component form and length of the vector v that has initial point $(4, -7)$ and terminal point $(-1, 5)$

Let $P = (4, -7) = (p_1, p_2)$ and $Q = (-1, 5) = (q_1, q_2)$.

Then, the components of $v = \langle v_1, v_2 \rangle$ are given by

$v_1 = q_1 - p_1 = -1 - 4 = -5$
$v_2 = q_2 - p_2 = 5 - (-7) = 12$

Thus, $v = \langle -5, 12 \rangle$

and the length of v is

$$\|v\| = \sqrt{(-5)^2 + 12^2} = \sqrt{169} = 13$$
Vector Operations

The two basic operations are **scalar multiplication** and **vector addition**. Geometrically, the product of a vector v and a scalar k is the vector that is $|k|$ times as long as v. If k is positive, then kv has the same direction as v, and if k is negative, then kv has the opposite direction of v.

![Diagram](image-url)
Definition of Vector Addition & Scalar Multiplication

Let $u = \langle u_1, u_2 \rangle$ and $v = \langle v_1, v_2 \rangle$ be vectors and let k be a scalar (real number). Then the sum of u and v is

$$u + v = \langle u_1 + v_1, u_2 + v_2 \rangle$$

and scalar multiplication of k times u is the vector

$$ku = k\langle u_1, u_2 \rangle = \langle ku_1, ku_2 \rangle$$
Vector Operations

Ex. Let $v = \langle -2, 5 \rangle$ and $w = \langle 3, 4 \rangle$. Find the following vectors.

a. $2v$

$$2v = \langle -4, 10 \rangle$$

b. $w - v$

$$w - v = \langle 3 - (-2), 4 - 5 \rangle = \langle 5, -1 \rangle$$
Writing a Linear Combination of Unit Vectors

Let \(u \) be the vector with initial point \((2, -5)\) and terminal point \((-1, 3)\). Write \(u \) as a linear combination of the standard unit vectors of \(\mathbf{i} \) and \(\mathbf{j} \).

Solution

\[
\begin{align*}
 u &= \langle -1 - 2, 3 + 5 \rangle \\
 &= \langle -3, 8 \rangle \\
 &= -3\mathbf{i} + 8\mathbf{j}
\end{align*}
\]

Graphically, it looks like…
Writing a Linear Combination of Unit Vectors

Let \(u \) be the vector with initial point \((2, -5)\) and terminal point \((-1, 3)\). Write \(u \) as a linear combination of the standard unit vectors \(i \) and \(j \).

Begin by writing the component form of the vector \(u \).

\[
\begin{align*}
\mathbf{u} &= \langle -1 - 2, 3 - (-5) \rangle \\
\mathbf{u} &= \langle -3, 8 \rangle \\
\mathbf{u} &= -3i + 8j
\end{align*}
\]
Unit Vectors

\(u = \text{unit vector} = \frac{v}{\|v\|} = \left(\frac{1}{\|v\|} \right)^v \)

Find a unit vector in the direction of \(v = \langle -2, 5 \rangle \)

\[
\frac{v}{\|v\|} = \frac{\langle -2, 5 \rangle}{\sqrt{(-2)^2 + (5)^2}} = \frac{1}{\sqrt{29}} \langle -2, 5 \rangle = \left\langle \frac{-2}{\sqrt{29}}, \frac{5}{\sqrt{29}} \right\rangle
\]
Let $u = -3i + 8j$ and let $v = 2i - j$. Find $2u - 3v$.

$$2u - 3v = 2(-3i + 8j) - 3(2i - j)$$

$$= -6i + 16j - 6i + 3j$$

$$= -12i + 19j$$